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Abstract—   In this paper,  we introduce  a new mathematical model to obtain new exact travelling wave solutions for Toda lattice equations, we obtain 

the solutions and the results are presented graphically. By comparison our new solutions by the other results we found that our solutions are new and 

not be found before, also these solutions take the form  ( ) ( )tanh ,2sinh
nd tu t nd t t nn

d
ϖϖ ϖ ϖ += + + − ∈ .. 

.  

Index Terms— Amplitude-frequency formulation, differential-difference equation, solitary solution, period. 

——————————      —————————— 

1 INTRODUCTION                                                                     

iscrete nonlinear lattices have been the focus of consider-
able attention in various branches of science. Many diffe-
rential equations on the nano scales are invalid, but the 

problems arising can be well modeled by differential-
difference equations [1-5]. As is well known, there are many 
physically interesting problems such as charge fluctuations in 
net work, ladder type electric circuits, phenomena in crystals, 
molecular chains, which all can be modelled by differential-
difference equations [6-10]. 
Recently many analytical methods were proposed to solve 
differential-difference equations, such as the exp-function me-
thod[11-13], the ancient Chinese algorithm [14], the variational 
iteration method[15,16,17], the homotopy perturbation me-
thod[18,19,20]. The mixed function method [21]. A complete 
review on various analytical methods is available in Refs [21]. 
In this paper we introduce a new mathematical model to ob-
tain new exact travelling wave solutions of Toda lattice equa-
tions, the results are presented graphically. By comparison our 
new solutions by the other results we found that our solutions 
are new and not be found before. 

       

 

      2 AMPLITUDE-FREQUENCY FORMULATION FOR 
NONLINEAR OSCILLATORS 
Consider a generalized nonlinear oscillator in the form  

( ) 0, (0) , (0) 0u f u u A u′′ ′+ = = =                      (1) 
We use a trial functions 

1cosu A tω=                                    (2) 
 

which is, the solution of the following linear oscillator equa-
tions 

 
2
1 0u uω′′ + = ,                                 (3) 

  
where 1ω   is trial frequency which can be chosen freely, for 
example, we can set 1ω =2 or  1ω ω= , where ω  is assumed 
to the frequency of the nonlinear oscillator.   
Substituting Eq.(2) into,  Eq.(1), we obtain the following  resi-
dual  

 
2
1 1 1( ) cos ( cos )R t A t f A tω ω ω= − +                        (4) 

 
 an amplitude-frequency formulation for nonlinear oscillators 
can be found from the equation  was proposed [18] 

( ) 0R t =                            (5) 

3 SOLITARY-SOLUTION FORMULATION FOR 
DIFFERENTIAL DIFFERENCE EQUATIONS 

         Suppose the differential-difference equation we discuss 
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in this paper is in the following nonlinear polynomial form: 

1 1
( ) ( , ,n

n n n
du t f u u u

dt − += ）                               (6) 
where ( , )nu u n t=  is a dependent variable; t is a continuous 
variable; ,n ip ∈  . 
We choose a trial-function in the forms:  

( , ) ( )n nu n t f tξ ω= +                            (7) 
where 0 ,n ndξ ξ= +  0ξ  is arbitrary, f   is  known functions.  
If a periodic solution is searched for, f  must be periodic func-
tion; If a solitary solution is solved, f  must be of solitary struc-
ture. In this paper a bell solitary solution of a differential-
difference equation is considered, and trial-functions are cho-
sen as follows   
 
 
 
 
 ( )

( )
( )0 0

( , ) 0( )0 0

nd t nd t
A e e

u n t B nd tn nd t nd t
e e

ξ ω ξ ω

ξ ωξ ω ξ ω

+ + − + +
−

= + + ++ + − + +
+

              (8)               
,                                    

0ξ  can be taken to be zero without loss of generality because 
the system (6) is autonomous. 
By replacing n  by 1n − and  n  by 2n − , we have  
 
 ( ) ( )( )

( ) ( ) ( )( )
1 ( 1 )

( , ) 1 ,1 1 ( 1 )

n d t n d t
A e e

u n t B n d tn n d t n d t
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 (9)  
                      ( ) ( )( )
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    (10 )                         
 
Solution procedure 
 
Step 1: Define residual function  

( )1 1
( )( ) , ,n

n n n
du tR t f u u u

dt − += −                           (11) 
.     

                       
Substituting Eqs. (8)~(10) into Eq. (6), we can obtain , respec-
tively, the residual function ( )R t  .  
 

( )1 1
( )( ) , ,n

n n n
du tR t f u u u

dt − += −  
 

Step 2: Solitary-solution formulation is constructed as fol-
lows 

( ) 0R t =                                                                    (12) 
Step 3:  Combining the coefficients of  neξ  in Eq.(12), and 
setting them to be zero, we can solve the algebraic equations 
to find the  values of ω , A  and B . Finally an explicit solu-
tion is obtained. 
  

4 APPLICATION IN DISCRETE TODA LATTICE EQUATION 
           Consider the following Toda difference equation  
 

                     
( ) ( ) ( ) ( ) ( )( )1 12 1 2 ,n n n n n

d du t u t u t u t u t
dt dt + −

 = + − + 
 

 
 
where , .n t∈ ∈   In order to simplify the equation , we set 
( ) ( )( )n nv t u t t= + . Then we obtain 

                       
( ) ( ) ( ) ( ) ( )( )1 12 2 .n n n n n

d dv t v t v t v t v t
dt dt + −= − +        (13)     

We try to find a solution (traveling wave solution) by using 
our new algorithm, 
Substituting Eqs. (8)~(10) into Eq. (13), and after simple calcu-
lation we  obtain  the more interesting solution   
 
                        2, .

sinh
A B

d
ωω= =    

           
Therefore, we found the solution 
( ) ( )tanh ,2

sinh

nd t
u t nd t t nn

d

ω
ω ω ω

+
= + + − ∈   

 
           

 

 

5   CONCLUSION 
       In this paper, though there are many analytical me-
thods, such as the exp-function method, the variational itera-
tion method, the homotopy perturbation method, for differen-
tial-difference equations, this paper suggests an effective and 
simple approach to such problems using the new algorithm, 
and the simple formulation can be used routinely by followers 
to various differential-difference equations.   
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